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A reduction of the boson representation of the algebra of the noncompact group 
Sp(4k, R), k>0, to its subgroup SU(k) is realized. The reduction scheme has 
two main branches: one through the totally symmetric unitary representations 
of the maximal compact subalgebra u(2k); the other through the ladder rep- 
resentations of the noncompact subalgebra u(k, k). Both reductions are accom- 
plished by means of the same set of Hermitian operators, but taken in different 
order. The case of k = 3, for the group Sp(12, R), used in the interacting vector 
boson model, is discussed in more detail. 

1. INTRODUCTION 

Symplectic models recently have been extensively applied in the theory 
of  nuclear structure (Raychev, 1972; Acherova et al., 1975; Rosensteel and 
Rowe, 1977a, b, 1980). In the work of  Vanagas et al. (1975) and Georgieva 
et al. (1982) the symplectic group Sp(12, R ) ,  introduced as a dynamical 
symmetry group of  the collective motions in nuclei, emerges as a natural 
noncompact  generalization of  the group U(6). Georgieva et al. (1982) 
suggested and developed an interacting vector boson model (IVBM). In 
this paper the boson representation of  the Sp(12, R )  algebra is discussed, 
with the emphasis on the maximal compact subgroup U(6) and the reduction 
chain (see also Georgieva et al. 1983): 

U(6) D SU(2) x SU(3) 
U 

0(3)  

As suggested by Vanagas (1971), another possible application of  the 
boson representation of  Sp (12, R) is the nonrelativistic three-body problem. 
It is well known that by introducing Jacobi coordinates the three-body 
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problem can be reduced to the translationally invariant problem of two 
quasiparticles with coordinates x~ and associated momenta q,  (a  = 1, 2). 
Using these variables, one can always introduce creation and annihilation 
operators whose real bilinear forms generate an algebra isomorphic to the 
Sp(12, R) algebra. 

The group Sp(12, R) is of the type Sp(4k, R), where k > 0 is an integer. 
In this case, on the one hand the group U(2k) appears as a maximal 
compact subgroup, which contains the direct product S U ( 2 ) x  SU(k) of 
the two mutually complementary subgroups. On the other hand, the so- 
called ladder representation of the noncompact  group U(k, k) acts in the 
space of  the boson representation of the Sp(4k, R) algebra. There exists a 
connection between this ladder representation and the boson representation 
of U(2k), which is realized through the third generator T3 of the multiplier 
SU(2) of the already mentioned direct product. This operator is also the 
first Casimir operator of  the group U(k, k). Different aspects of this relation- 
ship have been studied in the cases k = 1 (Alhassid et al., 1983) and k = 2 
(Kibler and Negadi, 1983a, b, 1984). 

In the present paper we show that both reduction chains 

Sp(4k, R) ~ U(2k) ~ SU(2) x SU(k) ~ SU(k) 

Sp(4k, R)-~ U(k, k)~ U ( k ) x  U(k)-~ SU(k) 

are equally convenient for the description of the arising representations of 
the group SU(k). 

In the case of the group Sp(12, R), in which we are particularly 
interested, this allows us to include the U(3, 3) algebra, which in our opinion 
will enrich the physical content of the IVBM. The latter will be discussed 
in a following paper. 

2. R E D U C T I O N  OF T H E  B O S O N  R E P R E S E N T A T I O N  OF Sp(4k, R) 

The boson representation of the Sp(4k, R) algebra is introduced in a 
standard way, using creation a~  and annihilation a~i (a=l,2;  i= 
1, 2 . . . .  , k) operators, which satisfy Bose commutation relations: 

[a~,, a~j] = ~8 ,~  

(all other commutators are zero): They act in a Hilbert space Y( with a 
vacuum 10), so that 

a,~, lO) = 0 

The scalar product is chosen so that the operator a~+~ is the Hermitian 
conjugate of  a~ (Anderson et al., 1967). 
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An orthonormal basis in Y( can be introduced in the following way: 

+ ~ ta+~ ~ 

i=1 (7ri!)~/2 j=l 

where ~ --- (Trl, 7r2, . . . ,  7rg) and v - (Vl, v 2 , . . . ,  Vg) run through all possible 
sets of k nonnegative integers. The operators 

+ q- d- 
a,~iat3 j, a~,iat~ j, a,~aoi, a,/3 = 1, 2; i , j  = 1 , . . . ,  k (2) 

commute as the generators of Sp(4k ,  R )  and therefore they generate a 
representation (Barut and Raszka, 1977) of the algebra of this group--the 
so-called boson representation. It is reducible and decomposes into two 
irreducible representations. One of them acts in the space Y(+, spanned 

k 
over the vectors (1) for which n = ~ - + p  ( r  m and v=Y.i= 1 Pl) Is 
even, and the other acts in Y(_, defined by the condition n odd, and 

A reducible representation of the group U(2k) acts in Yg. Its Wayl 
generators are part of the operators (2), namely 

q- 
a,~at~j, a,/3 = 1, 2; i , j  = 1, 2 , . . . ,  k 

The first-order Casimir operator of the group U(2k) is 
+ 

N = a~iaai (3) 

(summation over repeated Greek or Latin indices is understood throughout). 
Obviously ~r acts on the basis vectors according to the rule 

N[~, v) = n[~, v) (4) 

It follows, then, that the subspaces Y(+ and Yg_ decompose into a direct 
sum of eigensubspaces of 2(, defined by the condition n = fixed: 

In each of the spaces ~ , ,  a totally symmetric irreducible unitary representa- 
tion (IUR) of U(2k) is realized. These IURs will be denoted by [n]2k. T h e  
representations of the two mutually complementary groups SU(2) and 
S U ( k )  [SU(2)x  S U ( k ) =  U(2k)] acting in ~ have the following Wayl 
generators: 

a+~,at~,-�89 for SU(2) (5) 

a+~,a,~j - (1/k)8~jY for S U ( k )  (6) 

For the group SU(2) we introduce also the standard Hermitian generators: 

T~ 1 -~ = ~a,~,( cr,,, ),~oaoi (7) 
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where or,,, m = 1, 2, 3, are the Pauli matrices. The representation of the 
SU(2) algebra is expanded to a representation of the U(2) algebra by 
adding the operator 3 r to the generators (5) or (7). The addition of N to 
the generators (6) corresponds to a transition from SU(k) to U(k). It should 
be noted that the operator N is the first-order Casimir operator for the 
group U(2k) as well as for the groups U(2) and U(k). 

All the Casimir operators of SU(k) can be expressed in terms of  N 
and the second-order Casimir operator of SU(2),  

3 
T2= E T2 (8) 

m = l  

which follows from the fact that the groups SU(2) and SU(k) are mutually 
complementary and the representations [n]2k are symmetric. This can be 
established directly by using the Okubo theorem, according to which in the 
case of SU(n) the Casimir operators C(k "), k>n, are functions of 
C(2"),... ,  C (") (see also Moshinsky, 1962). In particular, we have 

C (k) = 2T 2 + (k - 2)N + ( ~ 2 )  3r (9) 
Z K  

Therefore, the IURs of the groups SU(2), SU(k), and S U ( 2 ) x  SU(k) 
acting in a given space ~ , ,  n = fixed, can be labeled by the eigenvalues 
T ( T +  1) of the operator T2: 

T=n/2, n/2-1, . . . ,O 

T=n/2, n/2-1, . . . ,1 /2 

for n even 
(lO) 

for n odd 

Thus when n = fixed and T = fixed, 2 T +  1 equivalent representations of  the 
group SU(k) arise. Each of them is labeled by the eigenvalues of  the 
operator T 3 : - T , - T + I , . . . ,  T. As a result we get a realization of  the 
reduction scheme: 

T2 r~ 
Sp(4k, R)-~ U(2k)--~ SU(2)xSU(k)-~ SU(k) (11) 

Hence, in the framework of the discussed boson representation of  the 
Sp(4k, R) algebra all possible irreducible representations of the group 
SU(k) are determined uniquely through all possible sets of the eigenvalues 
of the Hermitian operators Jr T 2, and T3. 

It turns out that the transition from Sp(4k, R) to SU(k) can be realized 
also through the algebra of  the group U(k, k). In this case the reduction 
is also carried out by use of the operators N, T 2, and T3, but taken in a 
different order. This follows from the fact that a reducible unitary representa- 
tion (Dothan et al., 1965; Todorov, 1966) of the U(k, k) algebra with Wayl 
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generators 

+ + + + i , j = l ,  k (12) alialj ,  alia2j,  -a2ialj ,  -a2ia2j,  �9 �9 �9 

acts in ~. 
Obviously the boson representation of  the Sp(4k,  R )  algebra contains 

the generators (12). The first-order Casimir operator of  U(k,  k)  is 

C ~  k'k)  = a +ia l i  - a 2 i a 2  + (13) 

and does not differ essentially from the operator T3: 

7"3 = �89 k'k) + k / 2  

T3 acts on the basis vectors (1) in the following way: 

T31~, ~,)=�89 ~)1~, ,') (14) 
and consequently its eigensubspaces ~ _ ~  are defined by the condition 

- ~, = fixed. 
It is easy to prove that each of  the spaces ~t~ is invariant with respect 

to the ladder representation of  U(k, k) and does not contain any other 
invariant subspaces. In other words, an irreducible representation (a ladder) 
of  the U(k,  k)  algebra is induced in each ~ _ ~ .  Moreover, 

~e= | ~e~_, (15) 
7r--lp 

The next step in the reduction is realized by means of the operator N, 
which in this case is related to a representation of  the maximal compact 
subgroup U ( k )  x U ( k )  of  the group U(k,  k).  The Wayl generators of this 
representation are part of  the operators (12): 

+ + i , j  = 1, 2, k (16) a l i a l j ,  a 2 i a 2 j ~  . . . , 

From the action of  the operator ~r on the basis vectors [see (4)] it follows 
that each space ~ _ ~  decomposes into a direct sum: 

~ _ ~  = ~f) ~ (17) 

The spaces ~,,~ are the common eigensubspaces of  T3 and N and are 
defined by the conditions 7r - v = fixed, 7r + ~, = fixed or 7r = fixed, ~, = fixed. 

Following the same considerations as above, one can see that an IUR 
of  U ( k ) x  U ( k )  (a step) acts in each ~ .  

Finally, the transition U ( k )  x U ( k )  ~ S U ( k )  is obtained with the help 
of  the operator T 2. As a result, one gets again a full description of all 
possible IURs of  S U ( k )  acting in ~. Now the corresponding reduction 
scheme is of  the type 

T3 JV" T 2 

Sp(4k,  R )  --~ U(k ,  k)  ~ U ( k )  x U ( k )  ~ S U ( k )  (18) 
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Fig. 1. The reductions Sp(4k, R)...-~ U(k, k)--~ U(k) x U(k). 

The splitting of the spaces ~§ and Y(_ corresponding to the reductions 
Sp(4k, R ) -  U(k, k ) -  U(k) x U(k) and Sp(4k, R ) -  U(2k) is shown 
schematically in Figure 1, where the columns represent the separate ladders 
[the IURs of  the U(k, k) algebra, which are defined by the operator 7"3] 
and the rows the UIRs of U(2k) (defined by 2r Each cell corresponds to 
an IUR of  U(k) x U(k). 

The reduction U(2k) ~ SU(2) • SU(k) ~ SU(k) at n = fixed is shown 
in Figure 2. Each of the rows represents an IUR of SU(2) • SU(k) assigned 
by the operator T 2. The columns correspond to the IURs of U(k) x U(k). 
The cells represent the IUR of SU(k), and each row contains 2 T + l  
equivalent representations of this group, labeled by the eigenvalues of the 
operator 7"3. 

3. EXAMPLES 

3.1. k = l  

This case is treated in Alhassid et al. (t983). In particular, it is shown 
there that if the boson realization is performed in terms of differential 
operators, then U(2) and U(1, 1) are groups generating the spectrum of 
the one-dimensional Schr6dinger equation with Morse potential for bound 
and scattering states, respectively. 

When k = 1 the operators ~V, T 2, and T3(C] 1J)) form a complete set of 
commuting Hermitian operators in Yg. 

3.2 .  k = 2  

The importance of this case is underlined by the fact that one of the 
ladders of  U(2, 2) defined by C] 2' 2) = - 2  generates the whole spectrum of 

/, 
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Fig. 2. The  r e d u c t i o n  U ( 2 k ) - ~  S U ( 2 )  x SU(k)~ SU(k). 

the nonrelativistic hydrogen atom (Malkin and Man'ko, 1965; Barut and 
Kleinert, 1967; Mack and Todorov, 1969; Kibler and Negadi, 1983a, b; 
1984). Kibler and Negadi (1983a, b, 1984) discuss the relationship between 
the nonrelativistic hydrogen atom and the four-dimensional harmonic oscil- 
lator with a symmetry group U(4) in the framework of the boson representa- 
tion of Sp(8, R). 

When k = 2, two mutually complementary SU(2) groups appear. The 
first, with generators (7), will be denoted by SU(2)T, and the second by 
SU(2)T,. The Hermitian generators of the latter are 

r 1 + Tm-sa,~i(o'm)o.a,~j, m=1,2 ,3  (19) 

and [see (9)] 
T 2 l p ( 2 )  = T a 

2,,.~ 2 
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The operators W, T 2, T 3 and T~ form a complete set of commuting operators 
in the space Yg. 

3.3. k=3 

This case will be considered in more detail. As already mentioned, 
Georgieva et al. (1982) developed IVBM based on the boson representation 
of Sp(12, R). In that paper the variables are expressed in terms of cyclic 
coordinates. We shall rewrite some of the quantities discussed here in terms 
of  the variables used in Georgieva et al. (1982). Within the IVBM, it is 
assumed that the collective motions in nuclei can be described by means 
of  two types of elementary excitations--two types of vector bosons--which 
form a "pseudospin"-SU(2) doublet. 

Thus creation and annihilation operators are introduced: 

1 
u+(a )  = ~ [x,. ( a )  - iq,~(a)] 

a = + 1 / 2 ,  m - - 0 , + l  (20) 
1 tim(or) =-~[x ' (a )+ iqm(a)] 

where xm(a) and q,.(a)=-i O/Ox"(a) are the corresponding cyclic coor- 
dinates and momenta. [The metric tensor is g,.. = gmn= (--1)"3,._..] The 
operators (20) satisfy the boson commutation relations 

lure(a), u ~ + ( ~ ) ]  = ~ , ~  

and Hermitian conjugation rules 

[u+..(a)]+ = u"(a), [um(,~)] + = U+m(a) 

They act in a Fock space with a vacuum state 

The correspondence between the operators u~ (a )  and urn(a) (m =0,  +1; 
a = +1/2)  and the operators a~+i and a,~i (i = 1, 2, 3; o~ = 1, 2) is obvious. 

The generators of the boson representation of the Sp(12, R) algebra 
can now be written as 

u+(a)u+.(~); U"(oOum(~); U+m(,~)U"(~) 
(21) 

m, n =0,  +1, a, f l = + l / 2  

We also introduce the following notations: 
+ + + + 

p ~  um(,~ =�89 rim= = u . ~ ( ~  = -�89 
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In terms of p+ and n + the Wayl generators of the ladder representation of 
U(3, 3) are 

+ l PkP, --nip k, pknt+ +, -n 'n~,  k, l=  0, +1 (22) 

The Wayl generators of U(6) and of the two mutually complementary 
groups SU(3) and the "pseudospin" SU(2), as well as of U(3) x U(3), can 
be expressed in an analogous way. 

It is convenient to use a new set of generators of the $p(12, R) algebra. 
This set consists of irreducible tensor operators with respect to the 0(3) 
group: 

L L M  + + FM(~, 13)-- 2 Clkl~Uk(~)u~(/3) 
k , m  

GLM(a,/3) = Y~ C~,nUk(a)Um(/3) (23) 
k,m 

A~,(~,/3) ~ L M  + = C l ~ , m U k ( ~ ) u , ~ ( / 3 )  
k,m 

where LM Clklm are the Clebsch-Gordan coefficients for the decomposition 
0(3) D 0(2) (Varshalovich et al., 1975). 

The operators A~(a , /3 )  (a, 13 = +�89 L = 0, 1, 2) generate an algebra of 
the maximal compact subgroup of Sp(12, R), namely the group U(6). Now 
the particle number operator 2( is 

N = - x / 3 Z A ~  2 + k + k = (PkP +nkn  ) (24) 
a k = 0 , ~ l  

The SU(3) subalgebra is generated by the operators 

O~ = x/-6 Y~ A ~ (  a, a) (25) 

interpreted as a truncated (Eliott) quadrupole momentum, and by the 
components of the angular momentum 

LM = --x/2 Y A~M( a, a) (26) 

which define the 0(3) subalgebra. 
The operators of the "pseudospin" 

_53-aO~l _�89 T_l _ . ~ a 0 t _ l  !~ 
"1-- w 2 r a  k2~ : v 2 r a  \ 2~ 21 

O l  T3 = To = -x/~[A (~, �89 - A~189 -�89 (27) 

1 = -  2 ( p ~ p k _  n-~n k) 
2 k=O, : t -1  

define the algebra of the group SU(2)---SU(2)7-. 
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The second-order Casimir operators of  the group SU(3) 

C(3) _ 1/~2 1_ 1112 

and of the group SU(2) 

are related by [see (9)] 

T2= y~ (--1)kTkT_k 
k=0,• 

C~ 3) = 2T 2 + ~W2 + ~c 

When n = fixed and T = fixed, a total of 2 T + 1 equivalent irreducible 
representations [A,/x]3 of SU(3) appear, where A = 2T and /z  = � 8 9  T. 

It should be noted that the final reduction 

SU(3) ~ SO(3) ~ 0(2)  

is performed in the standard way. As shown in Georgieva et al. (1983), the 
basis of Bargmann and Moshinsky (1961) is an appropriate one for the 
eigenvalue problem in IVBM. 

Thus, in the framework of the boson representation of  Sp(12, R) all 
possible representations of  SU(3) are uniquely defined by all possible 
eigenvalues of the Hermitian operators W, T 2, and T3. Moreover, the 
transition from Sp(12, R) to SU(3) can be realized through the group 
U(3, 3). In this case the reduction is also carried out by means of the same 
set of operators, but taken in a different order. 

In general the realized reduction of the boson representations of a 
Sp(4k, R) algebra through the representations of the maximal compact 
subalgebra U(2k), as well as through the ladder representations of U(k, k), 
could lead to a unified description of both the discrete and the continuous 
spectra observed in many quantum mechanical systems. 
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